Abstract. We present two universally composable and practical protocols by which a dealer can, verifiably and non-interactively, secret-share an integer among a set of players. Moreover, at small extra cost and using a distributed verifier proof, it can be shown in zero-knowledge that three shared integers a, b, c satisfy ab = c. This implies by known reductions non-interactive zero-knowledge proofs that a shared integer is in a given interval, or that one secret integer is larger than another. Such primitives are useful, e.g., for supplying inputs to a multiparty computation protocol, such as an auction or an election. The protocols use various set-up assumptions, but do not require the random oracle model.