This paper proposes an hybrid approach to estimate the 3D pose of an object. The integration of texture information based on image intensities in a more classical non-linear edge-based pose estimation computation has proven to highly increase the reliability of the tracker. We propose in this work to exploit the data provided by an optical flow algorithm for a similar purpose. The advantage of using the optical flow is that it does not require any a priori knowledge on the object appearance. The registration of 2D and 3D cues for monocular tracking is performed by a non linear minimization. Results obtained show that using optical flow enables to perform robust 3D hybrid tracking even without any texture model.