The brain has long been seen as a powerful analogy from which novel computational techniques could be devised. However, most artificial neural network approaches have ignored the genetic basis of neural functions. In this paper we describe a radically different approach. We have devised a compartmental model of a neuron as a collection of seven chromosomes encoding distinct computational functions representing aspects of real neurons. This model allows neurons, dendrites, and axon branches to grow, die and change while solving a computational problem. This also causes the synaptic morphology to change and affect the information processing. Since the appropriate computational equivalent functions of neural computation are unknown, we have used a form of genetic programming known as Cartesian Genetic Programming (CGP) to obtain these functions. We have evaluated the learning potential of this system in the context of solving a well known agent based learning scenario, known as wumpus...
Gul Muhammad Khan, Julian F. Miller, David M. Hall