Most of the previous works that disambiguate personal names in Web search results often employ agglomerative clustering approaches. In contrast, we have adopted a semi-supervised clustering approach in order to guide the clustering more appropriately. Our proposed semi-supervised clustering approach is novel in that it controls the fluctuation of the centroid of a cluster, and achieved a purity of 0.72 and inverse purity of 0.81, and their harmonic mean F was 0.76.