Sciweavers

IDEAL
2007
Springer

Out of Bootstrap Estimation of Generalization Error Curves in Bagging Ensembles

14 years 6 months ago
Out of Bootstrap Estimation of Generalization Error Curves in Bagging Ensembles
The dependence of the classification error on the size of a bagging ensemble can be modeled within the framework of Monte Carlo theory for ensemble learning. These error curves are parametrized in terms of the probability that a given instance is misclassified by one of the predictors in the ensemble. Out of bootstrap estimates of these probabilities can be used to model generalization error curves using only information from the training data. Since these estimates are obtained using a finite number of hypotheses, they exhibit fluctuations. This implies that the modeled curves are biased and tend to overestimate the true generalization error. This bias becomes negligible as the number of hypotheses used in the estimator becomes sufficiently large. Experiments are carried out to analyze the consistency of the proposed estimator.
Daniel Hernández-Lobato, Gonzalo Mart&iacut
Added 08 Jun 2010
Updated 08 Jun 2010
Type Conference
Year 2007
Where IDEAL
Authors Daniel Hernández-Lobato, Gonzalo Martínez-Muñoz, Alberto Suárez
Comments (0)