This work presents a research on the performance capabilities of an extension of the ViSOM (Visualization Induced SOM) algorithm by the use of the ensemble meta-algorithm and a later fusion process. This main fusion process has two different variants, considering two different criteria for the similarity of nodes. These criteria are Euclidean distance and similarity on Voronoi polygons. The capabilities, strengths and weakness of the different variants of the model are discussed and compared more deeply in the present work. The details of several experiments performed over different datasets applying the variants of the fusion to the ViSOM algorithm along with same variants of fusion with the SOM are included for this purpose.