Sciweavers

PSIVT
2007
Springer

Real-Time Hand Gesture Detection and Recognition Using Boosted Classifiers and Active Learning

14 years 5 months ago
Real-Time Hand Gesture Detection and Recognition Using Boosted Classifiers and Active Learning
In this article a robust and real-time hand gesture detection and recognition system for dynamic environments is proposed. The system is based on the use of boosted classifiers for the detection of hands and the recognition of gestures, together with the use of skin segmentation and hand tracking procedures. The main novelty of the proposed approach is the use of innovative training techniques - active learning and bootstrap -, which allow obtaining a much better performance than similar boosting-based systems, in terms of detection rate, number of false positives and processing time. In addition, the robustness of the system is increased due to the use of an adaptive skin model, a color-based hand tracking, and a multi-gesture classification tree. The system performance is validated in real video sequences.
Hardy Francke, Javier Ruiz-del-Solar, Rodrigo Vers
Added 09 Jun 2010
Updated 09 Jun 2010
Type Conference
Year 2007
Where PSIVT
Authors Hardy Francke, Javier Ruiz-del-Solar, Rodrigo Verschae
Comments (0)