Abstract. Developing and testing the key modules of autonomous humanoid soccer robots (e.g., for vision, localization, and behavior control) in software-in-the-loop (SIL) experiments, requires real-time simulation of the main motion and sensing properties. These include humanoid robot kinematics and dynamics, the interaction with the environment, and sensor simulation, especially the camera properties. To deal with an increasing number of humanoid robots per team the simulation algorithms must be very efficient. In this paper, the simulator framework MuRoSimF (Multi-Robot-Simulation-Framework) is presented which allows the flexible and transparent integration of different simulation algorithms with the same robot model. These include several algorithms for simulation of humanoid robot motion kinematics and dynamics (with O(n) runtime complexity), collision handling, and camera simulation including lens distortion. A simulator for teams of humanoid robots based on MuRoSimF is presente...