In this paper we propose a fundamental approach to perform the class of Nearest Neighbor (NN) queries, the core class of queries used in many of the location-based services, without revealing the origin of the query in order to preserve the privacy of this information. The idea behind our approach is to utilize one-way transformations to map the space of all static and dynamic objects to another space and resolve the query blindly in the transformed space. However, in order to become a viable approach, the transformation used should be able to resolve NN queries in the transformed space accurately and more importantly prevent malicious use of transformed data by untrusted entities. Traditional encryption based techniques incur expensive O(n) computation cost (where n is the total number of points in space) and possibly logarithmic communication cost for resolving a KNN query. This is because such approaches treat points as vectors in space and do not exploit their spatial properties. I...