Many speed-up techniques for route planning in static graphs exist, only few of them are proven to work in a dynamic scenario. Most of them use preprocessed information, which has to be updated whenever the graph is changed. However, goal directed search based on landmarks (ALT) still performs correct queries as long as an edge weight does not drop below its initial value. In this work, we evaluate the robustness of ALT with respect to traffic jams. It turns out that—by increasing the efficiency of ALT—we are able to perform fast (down to 20 ms on the Western European network) random queries in a dynamic scenario without updating the preprocessing as long as the changes in the network are moderate. Furthermore, we present how to update the preprocessed data without any additional space consumption and how to adapt the ALT algorithm to a time-dependent scenario. A time-dependent scenario models predictable changes in the network, e.g. traffic jams due to rush hour.