This paper deals with the problem of comparing and testing evolutionary algorithms, that is, the benchmarking problem, from an analysis point of view. A practical study of the application domain of four representative evolutionary algorithms is carried out using a relevant set of real-parameter function optimization benchmarks. The four selected algorithms are the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the Differential Evolution (DE), due to their successful results in recent studies, a Genetic Algorithm with real parameter operators, used here as a reference approach because it is probably the most familiar to researchers, and the Macroevolutionary algorithm (MA), which is not widely known but it shows a very remarkable behavior in some problems. The algorithms have been compared running several tests over the benchmark function set to analyze their capabilities from a practical point of view, in other words, in terms of their usability. The characterization of ...