Sciweavers

FSTTCS
2009
Springer

Arithmetic Circuits and the Hadamard Product of Polynomials

14 years 6 months ago
Arithmetic Circuits and the Hadamard Product of Polynomials
Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. • We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class C=L, and over fields of characteristic p the problem is in ModpL/poly. • We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size.
Vikraman Arvind, Pushkar S. Joglekar, Srikanth Sri
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where FSTTCS
Authors Vikraman Arvind, Pushkar S. Joglekar, Srikanth Srinivasan
Comments (0)