We present an approach to modeling the average case behavior of learning algorithms. Our motivation is to predict the expected accuracy of learning algorithms as a function of the number of training examples. We apply this framework to a purely empirical learning algorithm, (the one-sided algorithm for pure conjunctive concepts), and to an algorithm that combines empirical and explanation-based learning. The model is used to gain insight into the behavior of these algorithms on a series of problems. Finally, we evaluate how well the average case model performs when the training examples violate the assumptions of the model.
Michael J. Pazzani, Wendy Sarrett