— It has been observed that adding a few long range edges to certain graph topologies can significantly increase the rate of convergence for consensus algorithms. A notable example is the class of ring-structured Watts-Strogatz small world graphs. Building on probabilistic methods for analyzing ‘small-world phenomena’, developed in our earlier work, we provide here a probabilistic framework for analyzing this effect. We investigate what graph characteristics lead to such a significant improvement and develop bounds to analyze consensus problems on randomly varying graphs.
Pedram Hovareshti, John S. Baras, Vijay Gupta