Background subtraction is an essential processing component for many video applications. However, its development has largely been application driven and done in ad hoc manners. In this paper, we provide a Bayesian formulation of background segmentation based on Gaussian mixture models. We show that the problem consists of two density estimation problems, one application independent one dependent, and a set of intuitive and theoretically optimal solutions can be derived. The proposed framework was tested on meeting and traffic videos and compared favorably over well-known algorithms.
Dar-Shyang Lee, Jonathan J. Hull, Berna Erol