MicroRNAs (miRNAs) regulate a large proportion of mammalian genes by hybridizing to targeted messenger RNAs (mRNAs) and down-regulating their translation into protein. Although much work has been done in the genome-wide computational prediction of miRNA genes and their target mRNAs, an open question is how to efficiently obtain functional miRNA targets from a large number of candidate miRNA targets predicted by existing computational algorithms. In this paper, we propose a novel Bayesian model and learning algorithm, GenMiRCC (Generative model for miRNA regulation), that accounts for patterns of gene expression using miRNA expression data and a set of candidate miRNA targets. A set of high-confidence functional miRNA targets are then obtained from the data using a Bayesian learning algorithm. Our model scores 467 high-confidence miRNA targets out of 1,770 targets obtained from TargetScanS in mouse at a false detection rate of 2.5%: several confirmed miRNA targets appear in our hig...
Jim C. Huang, Quaid Morris, Brendan J. Frey