Sciweavers

AAAI
1998

Bayesian Network Models for Generation of Crisis Management Training Scenarios

14 years 1 months ago
Bayesian Network Models for Generation of Crisis Management Training Scenarios
We present a noisy-OR Bayesian network model for simulation-based training, and an efficient search-based algorithm for automatic synthesis of plausible training scenarios from constraint specifications. This randomized algorithm for approximate causal inference is shown to outperform other randomized methods, such as those based on perturbation of the maximally plausible scenario. It has the added advantage of being able to generate acceptable scenarios (based on a maximum penalized likelihood criterion) faster than human subject matter experts, and with greater diversity than deterministic inference. We describe a field-tested interactive training system for crisis management and show how our model can be applied offline to produce scenario specifications. We then evaluate the performance of our automatic scenario generator and compare its results to those achieved by human instructors, stochastic simulation, and maximum likelihood inference. Finally, we discuss the applicability of...
Eugene Grois, William H. Hsu, Mikhail Voloshin, Da
Added 01 Nov 2010
Updated 01 Nov 2010
Type Conference
Year 1998
Where AAAI
Authors Eugene Grois, William H. Hsu, Mikhail Voloshin, David C. Wilkins
Comments (0)