Sciweavers

AI
2015
Springer

Bi-goal evolution for many-objective optimization problems

8 years 7 months ago
Bi-goal evolution for many-objective optimization problems
This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effectiveness for a high-dimensional space but works well on a low-dimensional space. Inspired by these two observations, BiGE converts a given multi-objective optimization problem into a bi-goal (objective) optimization problem regarding proximity and diversity, and then handles it using the Pareto dominance relation in this bi-goal domain. Implemented with estimation methods of individuals’ performance and the classic Pareto nondominated sorting procedure, BiGE divides individuals into different nondominated layers and attempts to put well-converged and well-distributed individuals into the first...
Miqing Li, Shengxiang Yang, Xiaohui Liu
Added 14 Apr 2016
Updated 14 Apr 2016
Type Journal
Year 2015
Where AI
Authors Miqing Li, Shengxiang Yang, Xiaohui Liu
Comments (0)