Given the multicore microprocessor revolution, we argue that the architecture research community needs a dramatic increase in simulation capacity. We believe FPGA Architecture Model Execution (FAME) simulators can increase the number of useful architecture research experiments per day by two orders of magnitude over Software Architecture Model Execution (SAME) simulators. To clear up misconceptions about FPGA-based simulation methodologies, we propose a FAME taxonomy to distinguish the costperformance of variations on these ideas. We demonstrate our simulation speedup claim with a case study wherein we employ a prototype FAME simulator, RAMP Gold, to research the interaction between hardware partitioning mechanisms and operating system scheduling policy. The study demonstrates FAME’s capabilities: we run a modern parallel benchmark suite on a research operating system, simulate 64-core target architectures with multi-level memory hierarchy timing models, and add experimental hardwar...