Background: During meiosis, homologous chromosomes exchange segments via the formation of crossovers. This phenomenon is highly regulated; in particular, crossovers are distributed heterogeneously along the physical map and rarely arise in close proximity, a property referred to as “interference”. Crossover positions form patterns that give clues about how crossovers are formed. In several organisms including yeast, tomato, Arabidopsis, and mouse, it is believed that crossovers form via at least two pathways, one interfering, the other not. Results: We have developed a software package - “CODA”, for CrossOver Distribution Analyzer - which allows one to quantitatively characterize crossover patterns by fitting interference models to experimental data. Two families of interfering models are provided: the “gamma” model and the “beam-film” model. The user can specify single or two-pathways modeling, and the software package infers the model’s parameters and their confide...
Franck Gauthier, Olivier C. Martin, Matthieu Falqu