A traditional fixed-function graphics accelerator has evolved into a programmable general-purpose graphics processing unit over the last few years. These powerful computing cores are mainly used for accelerating graphics applications or enabling low-cost scientific computing. To further reduce the cost and form factor, an emerging trend is to integrate GPU along with the memory controllers onto the same die with the processor cores. However, given such a system-on-chip, the GPU, while occupying a substantial part of the silicon, will sit idle and contribute nothing to the overall system performance when running non-graphics workloads or applications lack of data-level parallelism. In this paper, we propose COMPASS, a compute shader-assisted data prefetching scheme, to leverage the GPU resource for improving single-threaded performance on an integrated system. By harnessing the GPU shader cores with very lightweight architectural support, COMPASS can emulate the functionality of a ha...
Dong Hyuk Woo, Hsien-Hsin S. Lee