We study bargaining games between suppliers and manufacturers in a network context. Agents wish to enter into contracts in order to generate surplus which then must be divided among the participants. Potential contracts and their surplus are represented by weighted edges in our bipartite network. Each agent in the market is additionally limited by a capacity representing the number of contracts which he or she may undertake. When all agents are limited to just one contract each, prior research applied natural generalizations of the Nash bargaining solution to the networked setting, defined the new solution concepts of stable and balanced, and characterized the resulting bargaining outcomes. We simplify and generalize these results to a setting in which participants in only one side of the market are limited to one contract each. The core of our results uses a linear-programming formulation to establish a novel connection between well-studied cooperative game theory concepts and the so...