—Efficient sharing of system resources is critical to obtaining high utilization and enforcing system-level performance objectives on chip multiprocessors (CMPs). Although several proposals that address the management of a single microarchitectural resource have been published in the literature, coordinated management of multiple interacting resources on CMPs remains an open problem. We propose a framework that manages multiple shared CMP resources in a coordinated fashion to enforce higher-level performance objectives. We formulate global resource allocation as a machine learning problem. At runtime, our resource management scheme monitors the execution of each application, and learns a predictive model of system performance as a function of allocation decisions. By learning each application’s performance response to different resource distributions, our approach makes it possible to anticipate the system-level performance impact of allocation decisions at runtime with little run...
Ramazan Bitirgen, Engin Ipek, José F. Mart&