Sciweavers

ATAL
2003
Springer

Coordination in multiagent reinforcement learning: a Bayesian approach

14 years 5 months ago
Coordination in multiagent reinforcement learning: a Bayesian approach
Much emphasis in multiagent reinforcement learning (MARL) research is placed on ensuring that MARL algorithms (eventually) converge to desirable equilibria. As in standard reinforcement learning, convergence generally requires sufficient exploration of strategy space. However, exploration often comes at a price in the form of penalties or foregone opportunities. In multiagent settings, the problem is exacerbated by the need for agents to “coordinate” their policies on equilibria. We propose a Bayesian model for optimal exploration in MARL problems that allows these exploration costs to be weighed against their expected benefits using the notion of value of information. Unlike standard RL models, this model requires reasoning about how one’s actions will influence the behavior of other agents. We develop tractable approximations to optimal Bayesian exploration, and report on experiments illustrating the benefits of this approach in identical interest games. Categories and Sub...
Georgios Chalkiadakis, Craig Boutilier
Added 06 Jul 2010
Updated 06 Jul 2010
Type Conference
Year 2003
Where ATAL
Authors Georgios Chalkiadakis, Craig Boutilier
Comments (0)