Sciweavers

IROS
2009
IEEE

Data-driven grasping with partial sensor data

14 years 7 months ago
Data-driven grasping with partial sensor data
— To grasp a novel object, we can index it into a database of known 3D models and use precomputed grasp data for those models to suggest a new grasp. We refer to this idea as data-driven grasping, and we have previously introduced the Columbia Grasp Database for this purpose. In this paper we demonstrate a data-driven grasp planner that requires only partial 3D data of an object in order to grasp it. To achieve this, we introduce a new shape descriptor for partial 3D range data, along with an alignment method that can rigidly register partial 3D models to models that are globally similar but not identical. Our method uses SIFT features of depth images, and encapsulates “nearby” views of an object in a compact shape descriptor.
Corey Goldfeder, Matei T. Ciocarlie, Jaime Peretzm
Added 24 May 2010
Updated 24 May 2010
Type Conference
Year 2009
Where IROS
Authors Corey Goldfeder, Matei T. Ciocarlie, Jaime Peretzman, Hao Dang, Peter K. Allen
Comments (0)