Abstract— This paper discusses the design and current capabilities of a new software tool, dVC, capable of simulating planar systems of bodies experiencing unilateral contacts with friction. Since different problems require different levels of accuracy, dVC provides user-selectable body types (rigid or locally-compliant), motion models (first-order, quasi-static, dynamic), and several state-of-the-art time-stepping methods. One can also choose to include friction between each body and the plane of motion. To support optimal and robust part design, dVC also allows on-the-fly changes to parameters of the geometric and physical models. The results obtained for three representative planar problems are presented: the design of a passive part-orienting device, the planning of a meso-scale assembly operation, and the design of a grasp strategy.
Stephen Berard, Jeffrey C. Trinkle, Binh Nguyen, B