Abstract. In the last decades, the Satisfiability and Constraint Satisfaction Problem frameworks were extended to integrate aspects such as uncertainties, partial observabilities, or uncontrollabilities. The resulting formalisms, including Quantified Boolean Formulas (QBF), Quantified CSP (QCSP), Stochastic SAT (SSAT), or Stochastic CSP (SCSP), still rely on networks of local functions defining specific graphical models, but they involve queries defined by sequences of distinct elimination operators ( and for QBF and QCSP, max and + for SSAT and SCSP) preventing variables from being considered in an arbitrary order when the problem is solved (be it by tree search or by variable elimination). In this paper, we show that it is possible to take advantage of the actual structure of such multi-operator queries to bring to light new ordering freedoms. This leads to an improved constrained induced-width and doing so to possible exponential gains in complexity. This analysis is performed in a...