Neurons in area V4 have relatively large receptive fields (RFs), so multiple visual features are simultaneously "seen" by these cells. Recordings from single V4 neurons suggest that simultaneously presented stimuli compete to set the output firing rate, and that attention acts to isolate individual features by biasing the competition in favor of the attended object. We propose that both stimulus competition and attentional biasing arise from the spatial segregation of afferent synapses onto different regions of the excitable dendritic tree of V4 neurons. The pattern of feedforward, stimulus-driven inputs follows from a Hebbian rule: excitatory afferents with similar RFs tend to group together on the dendritic tree, avoiding randomly located inhibitory inputs with similar RFs. The same principle guides the formation of inputs that mediate attentional modulation. Using both biophysically detailed compartmental models and simplified models of computation in single neurons, we d...
Kevin A. Archie, Bartlett W. Mel