The present work deals with the design, implementation and assessment of a new haptic system specifically conceived for manipulative tasks in virtual environments. Such a system was designed by taking into account specific issues related to fine manipulation, such as multipoint haptics, coherence, transparency and physical representation. The haptic system described herein is integrated with a virtual environment engine for the simulation of multifinger manipulation. A preliminary evaluation of the system was conducted by comparing human performance in the manipulation of virtual objects with respect to real objects, according to the data available in the literature. The experiments confirm how the most relevant relationships among physiological and physical parameters involved in manipulation are also preserved during virtual manipulation. However, an indepth analysis of the results shows that simulation parameters affect the level of force control during virtual manipulation and the ...