This paper introduces a fully-Eulerian interface tracking framework that preserves the fine details of liquids. Unlike existing Eulerian methods, the proposed framework shows good mass conservation even though it does not employ conventional Lagrangian elements. In addition, it handles complex merging and splitting of interfaces robustly due to the implicit representation. To model the interface more accurately, a high order polynomial reconstruction of the signed distance function is utilized based on a number of sub-grid quadrature points. By combining this accurate polynomial representation with a high-order re-initialization method, the proposed framework preserves the detailed structures of the interface. Moreover, the method is simple to implement, unconditionally stable, and is suitable for parallel computing environments. CR Categories: I.3.7 [Computing Methodologies]: Computer Graphics--Three Dimensional Graphics and Realism;