Content-aware resizing methods have recently been developed, among which, seam-carving has achieved the most widespread use. Seam-carving's versatility enables deliberate object removal and benign image resizing, in which perceptually important content is preserved. Both types of modifications compromise the utility and validity of the modified images as evidence in legal and journalistic applications. It is therefore desirable that image forensic techniques detect the presence of seam-carving. In this paper we address detection of seam-carving for forensic purposes. As in other forensic applications, we pose the problem of seam-carving detection as the problem of classifying a test image in either of two classes: a) seam-carved or b) non-seam-carved. We adopt a pattern recognition approach in which a set of features is extracted from the test image and then a Support Vector Machine based classifier, trained over a set of images, is utilized to estimate which of the two classes t...