— Most of robotic soft pads studied so far were made with a thick layer of homogeneous material shaped around a rigid core; their behavior has been widely investigated in the literature, mainly under compressive contact load, showing typical non-linear relationship between contact deformation and applied load (the so called power law). This paper proposes differentiated layer design, that is the adoption of a single elastic material, dividing the overall thickness of the pad into layers with different structural design (e.g. a continuous skin layer coupled with an internal layer with voids). The purpose is to modify the actual pad compliance and the resulting power law; in particular, given the material and the allowable pad thickness, to increase the compliance with respect to a non structured pad. Some possible internal layer structures are described, compatible with rapid prototyping manufacturing. Their compressive behaviors are tested and comparatively evaluated showing that the...