We present a domain-independent topic segmentation algorithm for multi-party speech. Our feature-based algorithm combines knowledge about content using a text-based algorithm as a feature and about form using linguistic and acoustic cues about topic shifts extracted from speech. This segmentation algorithm uses automatically induced decision rules to combine the different features. The embedded text-based algorithm builds on lexical cohesion and has performance comparable to state-of-the-art algorithms based on lexical information. A significant error reduction is obtained by combining the two knowledge sources.