Sciweavers

IWC
2002

Discovering user communities on the Internet using unsupervised machine learning techniques

13 years 10 months ago
Discovering user communities on the Internet using unsupervised machine learning techniques
Interest in the analysis of user behaviour on the Internet has been increasing rapidly, especially since the advent of electronic commerce. In this context, we argue here for the usefulness of constructing communities of users with common behaviour, making use of machine learning techniques. In particular, we assume that the users of any service on the Internet constitute a large community and we aim to construct smaller communities of users with common characteristics. The paper presents the results of three case studies for three different types of Internet service: a digital library, an information broker and a Web site. Particular attention is paid on the different types of information access involved in the three case studies: query-based information retrieval, profile-based information filtering and Web-site navigation. Each type of access imposes different constraints on the representation of the learning task. Two different unsupervised learning methods are evaluated: conceptu...
Georgios Paliouras, Christos Papatheodorou, Vangel
Added 22 Dec 2010
Updated 22 Dec 2010
Type Journal
Year 2002
Where IWC
Authors Georgios Paliouras, Christos Papatheodorou, Vangelis Karkaletsis, Constantine D. Spyropoulos
Comments (0)