Currently, there is a trend to promote personalized health care in order to prevent diseases or to have a healthier life. Using current devices such as smart-phones and smart-watches, an individual can easily record detailed data from her daily life. Yet, this data has been mainly used for self-tracking in order to enable personalized health care. In this paper, we provide ideas on how process mining can be used as a fine-grained evolution of traditional self-tracking. We have applied the ideas of the paper on recorded data from a set of individuals, and present interesting conclusions and challenges.