Abstract— This paper presents the Discrete Search Leading continuous eXploration (DSLX) planner, a multi-resolution approach to motion planning that is suitable for challenging problems involving robots with kinodynamic constraints. Initially the method decomposes the workspace to build a graph that encodes the physical adjacency of the decomposed regions. This graph is searched to obtain leads, that is, sequences of regions that can be explored with sampling-based tree methods to generate solution trajectories. Instead of treating the discrete search of the adjacency graph and the exploration of the continuous state space as separate components, DSLX passes information from one to the other in innovative ways. Each lead suggests what regions to explore and the exploration feeds back information to the discrete search to improve the quality of future leads. Information is encoded in edge weights, which indicate the importance of including the regions associated with an edge in the ne...
Erion Plaku, Lydia E. Kavraki, Moshe Y. Vardi