Localization is an important and extensively studied problem in ad-hoc wireless sensor networks. Given the connectivity graph of the sensor nodes, along with additional local information (e.g. distances, angles, orientations etc.), the goal is to reconstruct the global geometry of the network. In this paper, we study the problem of localization with noisy distance and angle information. With no noise at all, the localization problem with both angle (with orientation) and distance information is trivial. However, in the presence of even a small amount of noise, we prove that the localization problem is NP-hard. Localization with accurate distance information and relative angle information is also hard. These hardness results motivate our study of approximation schemes. We relax the non-convex constraints to approximating convex constraints and propose linear programs (LP) for two formulations of the resulting localization problem, which we call the weak deployment and strong deployment...
Amitabh Basu, Jie Gao, Joseph S. B. Mitchell, Giri