— In this paper we present a new system for a mobile robot to generate an articulated scene model by analyzing complex dynamic 3D scenes. The system extracts essential knowledge about the foreground, like moving persons, and the background, which consists of all visible static scene parts. In contrast to other 3D reconstruction approaches, we suggest to additionally distinguish between static parts, like walls, and movable objects like chairs or doors. The discrimination supports the reconstruction process and additionally, delivers important information about interaction objects. Here, the movable object detection is realized object independent by analyzing changes in the scenery. Furthermore, in the proposed system the background scene is feedbacked to the tracking part yielding a much better tracking and detection result which improves again the 3D reconstruction. We show in our experiments that we are able to provide a sound background model and to extract simultaneously persons ...