In this paper, we present an algorithm that performs simplification of large geographical maps through a novel use of graphics hardware. Given a map as a collection of non-intersecting chains and a tolerance parameter for each chain, we produce a simplified map that resembles the original map, satisfying the condition that the distance between each point on the simplified chain and the original chain is within the given tolerance parameter, and that no two chains intersect. In conjunction with this, we also present an out-of-core system for interactive visualization of these maps. We represent the maps hierarchically and employ different pruning strategies to accelerate the rendering. Our algorithm uses a parallel approach to do rendering as well as fetching data from the disk in a synchronous manner. We have applied our algorithm to a gigabyte sized map dataset. The memory overhead of our algorithm (the amount of main memory it requires) is output sensitive and is typically tens of m...
Nabil H. Mustafa, Shankar Krishnan, Gokul Varadhan