The authors have proposed a dynamic turning control system of a quadruped robot by using nonlinear oscillators. It is composed of a spontaneous locomotion controller and voluntary motion controller. In this article, capability of dynamic turning motion of the proposed control system is verified through numerical simulations and hardware experiments: Various turning speed and orientation make the motion of the robot asymmetry in terms of duty ratio, stride and center of pressure. The proposed controller actively and adaptively controls redundant DOF to cancel the dynamic asymmetry and established stable turning motion at various locomotion speed and turning orientation.