Relational index structures, as for instance the Relational Interval Tree, the Relational R-Tree, or the Linear Quadtree, support efficient processing of queries on top of existing object-relational database systems. Furthermore, there exist effective and efficient models to estimate the selectivity and the I/O cost in order to guide the cost-based optimizer whether and how to include these index structures into the execution plan. By design, the models immediately fit to common extensible indexing/optimization frameworks, and their implementations exploit the built-in statistics facilities of the database server. In this paper, we show how these statistics can also be used for accelerating geo-spatial queries using the relational quadtree by reducing the number of generated join partners which results in less logical reads and consequently improves the overall runtime. We cut down on the number of join partners by grouping different join partners together according to a statistic driv...