Increasing demand for larger high-performance applications requires developing more complex systems with hundreds of processing cores on a single chip. To allow dynamic voltage scaling in each on-chip cores individually, many on-chip voltage regulators must be used. However, the limitations in implementation of onchip inductors can reduce the efficiency, accuracy and the number of voltage modes generated by regulators. Therefore the future voltage scheduling algorithms must be efficient, even in the presence of few voltage modes; and fast, in order to handle complex applications. Techniques proposed to date, need many fine-grained voltage modes to produce energy efficient results and their quality degrades significantly as the number of modes decreases. This paper presents a new technique called Adaptive Stochastic Gradient Voltage and Task Scheduling (ASG-VTS) that quickly generates very energy efficient results irrespective of the number of available voltage modes. The results of co...
Bita Gorjiara, Nader Bagherzadeh, Pai H. Chou