The simulation of large–scale multicast networks often requires a significant amount of memory that can easily exceed the capacity of current computers, both because of the inherently large amount of state necessary to simulate message routing and because of design oversights in the multicast portion of existing simulators. In this paper we describe three approaches to substantially reduce the memory required by multicast simulations: 1) We introduce a novel technique called “negative forwarding table” to compress mutlicast routing state. 2) We aggregate the routing state objects from one replicator per router per group per source to one replicator per router. 3) We employ the NIx– Vector technique to replace the original unicast IP routing table. We implemented these techniques in the ns2 simulator to demonstrate their effectiveness. Our experiments show that these techniques enable packet level multicast simulations on a scale that was previously unachievable on modern work...
Donghua Xu, George F. Riley, Mostafa H. Ammar, Ric