Flash memory based solid state drives (SSDs) have shown a great potential to change storage infrastructure fundamentally through their high performance and low power. Most recent studies have mainly focused on addressing the technical limitations caused by special requirements for writes in flash memory. However, a unique merit of an SSD is its rich internal parallelism, which allows us to offset for the most part of the performance loss related to technical limitations by significantly increasing data processing throughput. In this work we present a comprehensive study of essential roles of internal parallelism of SSDs in high-speed data processing. Besides substantially improving I/O bandwidth (e.g. 7.2x), we show that by exploiting internal parallelism, SSD performance is no longer highly sensitive to access patterns, but rather to other factors, such as data access interferences and physical data layout. Specifically, through extensive experiments and thorough analysis, we obta...