Sciweavers

CORR
2010
Springer

Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error

13 years 11 months ago
Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error
Consider the minimum mean-square error (MMSE) of estimating an arbitrary random variable from its observation contaminated by Gaussian noise. The MMSE can be regarded as a function of the signal-to-noise ratio (SNR) as well as a functional of the input distribution (of the random variable to be estimated). It is shown that the MMSE is concave in the input distribution at any given SNR. For a given input distribution, the MMSE is found to be infinitely differentiable at all positive SNR, and in fact a real analytic function in SNR under mild conditions. The key to these regularity results is that the posterior distribution conditioned on the observation through Gaussian channels always decays at least as quickly as some Gaussian density. Furthermore, simple expressions for the first three derivatives of the MMSE with respect to the SNR are obtained. It is also shown that, as functions of the SNR, the curves for the MMSE of a Gaussian input and that of a non-Gaussian input cross at most ...
Dongning Guo, Yihong Wu, Shlomo Shamai, Sergio Ver
Added 25 Dec 2010
Updated 25 Dec 2010
Type Journal
Year 2010
Where CORR
Authors Dongning Guo, Yihong Wu, Shlomo Shamai, Sergio Verdú
Comments (0)