Sciweavers

KDD
1995
ACM

Feature Extraction for Massive Data Mining

14 years 4 months ago
Feature Extraction for Massive Data Mining
Techniques for learning from data typically require data to be in standard form. Measurements must be encoded in a numerical format such as binary true-or-false features, numerical features, or possibly numerical codes. In addition, for classification, a clear goal for learning must be specified. While some databases may readily be arranged in standard form, many others may be combinations of numerical fields or text, with thousands of possibilities for each data field, and multiple instances of the same field specification. A significant portion of the effort in real-world data mining applications involves defining, identifying and encoding the data into suitable features. In this paper, we describe an automatic feature extraction procedure, adapted from modern text categorization techniques, that maps very large databases into manageable datasets in standard form. We describe a commercial application of this procedure to mining a collection of very large databases of home appliance ...
V. Seshadri, Raguram Sasisekharan, Sholom M. Weiss
Added 26 Aug 2010
Updated 26 Aug 2010
Type Conference
Year 1995
Where KDD
Authors V. Seshadri, Raguram Sasisekharan, Sholom M. Weiss
Comments (0)