This paper presents a novel approach to assist the user in exploring appropriate transfer functions for the visualization of volumetric datasets. The search for a transfer function is treated as a parameter optimization problem and addressed with stochastic search techniques. Starting from an initial population of (random or pre-defined) transfer functions, the evolution of the stochastic algorithms is controlled by either direct user selection of intermediate images or automatic fitness evaluation using user-specified objective functions. This approach essentially shields the user from the complex and tedious "trial and error" approach, and demonstrates effective and convenient generation of transfer functions.
Taosong He, Lichan Hong, Arie E. Kaufman, Hanspete