In clinical applications where structural asymmetries between homologous shapes have been correlated with pathology, the questions of definition and quantification of ‘asymmetry’ arise naturally. When not only the degree but the position of deformity is thought relevant, asymmetry localization must also be addressed. Asymmetries between paired shapes have already been formulated in terms of (nonrigid) diffeomorphisms between the shapes. For the infinity of such maps possible for a given pair, we define optimality as the minimization of deviation from isometry under the constraint of piecewise deformation homogeneity. We propose a novel variational formulation for segmenting asymmetric regions from surface pairs based on the minimization of a functional of both the deformation map and the segmentation boundary, which defines the regions within which the homogeneity constraint is to be enforced. The functional minimization is achieved via a quasi-simultaneous evolution of the m...
Nicholas A. Lord, Jeffrey Ho, Baba C. Vemuri, Step