Recently, considerable advances have been made in the (on-line) control of logic program specialisation. A clear conceptual distinction has been established between local and global control and on both levels concrete strategies as well as general frameworks have been proposed. For global control in particular, recent work has developed concrete techniques based on the preservation of characteristic trees (limited, however, by a given, arbitrary depth bound) to obtain a very precise control of polyvariance. On the other hand, the concept of an m-tree has been introduced as a re ned way to trace \relationships" of partially deduced atoms, thus serving as the basis for a general framework within which global termination of partial deduction can be ensured in a non ad hoc way. Blending both, formerly separate, contributions, in this paper, we present an elegant and sophisticated technique to globally control partial deduction of normal logic programs. Leaving unspeci ed the speci c ...