— This paper presents a method for vision based estimation of the pose of human hands in interaction with objects. Despite the fact that most robotics applications of human hand tracking involve grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the surrounding environment. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large database (100000 entries) of hand poses with and without grasped objects. The system operates in real time, it is robust to self occlusions, object occlusions and segmentation errors, and provides full hand pose reconstruction from markerless video. Temporal consistency in hand pose is taken into account, without explicitly tracking the hand in the high dimensional pose space.